

CANDU Safety #18 - Safety Research and Development

Dr. V.G. Snell Director Safety & Licensing

24/05/01

1

Research & Development

Research

Safety R&D Goals

- **λ** Resolve AECB Generic Action Items
- **λ** Reduce releases during normal operation
- **λ** Improve protection against higher frequency events
- **λ** Improve system response to design basis events
- **λ** Contain severe core damage consequences
- **λ** Validate and improve safety analysis codes
- **λ** Develop passive and advanced safety concepts

Focus

- x safety R&D in Canada is done by the industry (AECL and the 3 domestic nuclear utilities)
- AECB does a small amount of confirmatory R&D and reviews
 & critiques the industry programme
- **λ** R&D split into 2 main areas:
 - unique aspects of CANDU
 - » physics, fuel, fuel channels, heavy water, moderator
 - **λ** emphasis on realistic models
 - generic nuclear world-class R&D in areas of strength
 - **k** hydrogen ignition and detonation, iodine behaviour

Linkage of Safety Research to Plant Licensing

Chalk River Laboratories

- **λ** 2000 people
- large (orig. 200 MW(th)) heavy-water moderated research reactor (NRU)
- x severe accident in-reactor loop (Blowdown Test Facility) in NRU
- **λ** zero-energy reactor (ZED-2)
- λ hot cells
- λ fuel fabrication and test
- λ detritiation
- λ critical heat flux
- λ moderator circulation

Whiteshell Laboratories

- λ organic-cooled reactor (now decommissioned)
- λ large scale vented combustion facility
- **λ** radio-iodine test facility
- RD-14M figure-of-eight thermohydraulics test loop
- λ large-scale gas mixing _____
 facility
- λ pressure-tube ballooning and moderator subcooling

Thermohydraulics of Figure-of-Eight Loop

- λ full elevation simulation of heat transport system
- λ 10 full-length channels
- mass flux, transit times, pressure & enthalpy distribution similar to CANDU
- λ large and small LOCA
- **λ** ECC injection & refill
- natural circulation at full and partial inventory
- λ loss of shutdown cooling
- λ primary purpose: code validation

24/05/01

Cold Water Injection Facility BLOWDOWN VALVE

- λ full-scale, full length heated fuel channel
- λ representative feeders and endfittings
- **λ** 37-element fuel
- λ blowdown and refill performance
- LOCA in CANDU channel can be tested in full scale
- **λ** primary purpose: code validation

Critical Heat Flux

- > purpose: to determine with high accuracy the onset of critical heat flux under high-power conditions
- **λ** used to determine overpower trip setpoints
- λ fundamental & parametric studies in freon
- x final tests in full-scale, full-length heated 37-element channels with realistic bundle end-plates, appendages, etc.
- A onset of dry-patch, dry-patch spread, and post-dryout temperatures
- **λ** now testing CANFLEX fuel (43-element)
 - carrier for advanced high-burnup fuel
 - increase margins for natural uranium fuel

Pressure Tube Integrity

- A fracture properties of pressure tube (Zr-2.5%Nb alloy) under normal operating conditions
- **λ** effects of irradiation and ageing (creep & growth)
- **λ** set fitness-for-service conditions
- λ support leak-before-break
- properties monitored by samples removed from operating reactors

High Temperature Fuel Channel Integrity

- internally-heated and pressurized pressure-tube inside calandria tube inside water tank
- strains or sags to contact calandria tube
- x integrity of pressure tube before contact
- **λ** integrity of channel after contact
- A defines required moderator subcooling to prevent calandria tube dryout after contact

Moderator Subcooling Requirements

Moderator Circulation

- measure threedimensional velocity and temperature distributions in CANDU moderator geometry
- λ used for code validation
- λ inlet & outlet
 pipes can be
 configured for
 CANDU 6, 9 etc.

Hydrogen Mixing and Combustion

- λ Large Scale Vented Combustion Facility
- hydrogen combustion and detonation boundaries in various steam / air/ hydrogen mixtures
- λ interior geometry can be configured

CANDU 9 Simplification

- λ ECC water tank ball seal
 - leaktightness
 - surface flaws
 - vortexes
 - ageing
 - deformation
- **λ** ECC one-way rupture disk
 - large sustained flows from NRU high head tank
 - absence of fragments
 - flow area
 - reverse pressure

Other Areas

λ fission product release and transport

- goal is to develop physically realistic models
- large feeder & end fitting surface area provides natural trap
- hot-cell & in-reactor tests in NRU (Blowdown Test Facility)
- **λ** severe core damage
 - demonstrate basic phenomena of core collapse for CANDU in scaled facility
- **λ** containment thermohydraulics
 - not unique, use world data for code validation
- **λ** passive safety designs

Code Validation and R&D

24/05/01

Summary

- λ CANDU safety R&D focussed on aspects unique to CANDU
- **λ** some world-class generic R&D also performed
- λ industry carries special responsibility for safety R&D
- object is to develop physically realistic models based on experiments, to get an accurate picture of safety margins
- A formal code validation process underway, which will require quantification of uncertainties